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Abstract. The polaron self-energy due to phonon confinement in a quantum bax or wire has 
been calculated as a function of the size of the quantum boxes or wires by the perturbative 
methodusingtheframeworkofthe effective massapproximation. It is found that theeffects 
of phonon confinement are dominant in small boxes and wires. The results also show that it 
is a function of bath width and thickness of the wire rather than simply the cross-sectional 
area. 

1. Introduction 

In recent years, with the advances in microfabrication technology such as molecular 
beam epitaxy (MBE), lithographic and etching techniques, ultrasmall semiconductor 
quantum wires [l-31 and quantum dots [e] have been successfully fabricated. A great 
deal of interest has been shown in the study of these structures because of their potential 
device applications and their success in uncovering new phenomena. As a consequence, 
understanding the electronic properties in such structures is of particular importance. 

The exciton binding energies associated with the effects of the electron (hole)- 
optical-phonon interaction in quantum wires have been evaluated previously by Degani 
and Hipolito [9 ] .  However, for the phonon system they have used the bulk-phonon 
approximation instead of the confined phonon. Indeed, phonon confinement has been 
shown by experiment [lo]. 

The polaronic states may be affected by changes in the Frohlich Hamiltonian caused 
byphonon confinement. Inarecent paper, Stroscio [ll] hasderived theone-dimensional 
Frohlich Hamiltonian describing the interaction of an electron and Lo-phonon modes 
characterized by a travellingwavein thez-directionandstanding wavesin thex-direction 
and y-direction in a rectangular quantum-well wire. Size effects on the total scattering 
rates for the conlined phonon scattering of one-dimensional electron gas have been 
calculated. More recently, several authors have reported calculations of the binding 
energy of impurity, excitaton and biexciton in quantum boxes [12-141. However, they 
have not taken into account the interaction of the electron with the LO phonons. Brus 
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[12] has calculated the energy levels of small semiconductor crystalline spheres under 
the effective-mass approximation, with which the dielectric polarization is partly con- 
sidered. 

Xia [15] has investigated the electronic structure of quantum dots and shown that 
the dielectric polarization of the small sphere lowers the bindmgenergies, especially for 
a small radius. Pan etaf [ 161 also calculated the energy of the charge carrier in a spherical 
semiconductor crystallite including the interaction of the charged carrier with phonons. 

To date there is no published report on the interaction Hamiltonian of an electron 
with LO phonons in a quantum box. In this paper we shall derive the interaction Ham- 
iltonian in a quantum box and use this Hamiltonian and the Hamiltonian derived by 
Stroscio to calculate the polaron self-energy due to phonon confinement in a quantum 
box and wire. Similar studies have been performed for a free polaron, impurity states 
and exciton levels in a polar crystal slab by one of the authors (S W Gu) and his co- 
writers [17-191. 

In section 2 we derive the interaction Hamiltonian of an electron with LO phonons 
in a quantum box. Section 3 gives the calculation method in both quantum box and 
quantum wire. In section 4, the details of the numerical calculations are shown and the 
results are discussed. A brief conclusion is given in the last section. 

Ka-Di Zhu and Shi-Wei Gu 

2. The interaction Hamiltonian between an electron and LO phonons in a quantum box 

The interaction Hamiltonian of an electron with the phonon modes in an ionic crystal 
slab has been derived by Licari and Evrard [ZO]. The resulting expression includes both 
the bulklike sinusoidal modes and the localized surface modes. The bulklike modes are 
equivalent to the bulk Lo-phonon modes in three dimensions in the limit of an infinitely 
thick slab. In a similar way, Stroscio [ll] has also derived the Frohlich Hamiltonian 
describing the interaction between Lo-phonon modes of a rectangular quantum wire 
and charge carriers of a one-dimensional electron gas, and then used this Hamiltonian 
to calculate the total scattering rate. 

To derive the Frohlich Hamiltonian describing the interaction of an electron and LO 
phonons in a zero-dimensional semiconductor material, the three-dimensional Frohlich 
Hamiltonian HISo) must satisfy the boundary conditions governing the way in whch the 
Lo-phonon potential vanishes in thex,.y and z directions. Hy) can be written 

where K is a three-dimensional wavevector defined by 

K = ( k ,  k) = (k, ky ,  k,) 

and 
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where wLo is the frequency of the phonon, V is the crystal volume, E, is the high- 
frequency dielectric constant, and E~ is the low-frequency dielectric constant. If we 
divide the sum over K into a sum over k and a sum over k, > 0, H$3D) becomes 

To derive the Frohlich Hamiltonian for a phonon confined in three dimensions, we 
first define 

where theoperatorsa:(-k)anda?(-k)foIlowby thedefinitionoftheadjoint. 
Secondly, by defining 

A + ( k J ,  = [ a = ( k ~ , k , ) + a = ( k , . - k , ) l / L ~  ( 5 4  

A_(k,). = -i[a,(k,,k,) - a,(k,, - k , ) ] / ~ .  (5b) 

Finally, by defining 

Bi(+), =[A.(k,)* +Az(-k,),]/fi ( 6 4  

B*(- )*  = -i[A.(k,). - A + ( - k J * ] / f i  (6b) 

+LJ2 and z = ?L3/2 results in which describes the 
andtakingk, = t+-mln/Ll,k, = +m2n/L,andkz = ?m,n/L,toensurethatboxmodes 
vanish at x = ?Ll/2,  y = - 
interaction of an electron and Lo-phonon modes characterized by standing waves in all 
three directions. Since its expression is similar to the case of the rectangular quantum 
wire derived by Stroscio [ll], we neglect it here. 

In the following we shall use this Hamiltonian and the Hamiltonian derived by 
Stroscio to calculate the electron self-energy in a quantum box and wire by the per- 
turbative approach. 

i 

3. Theory 

For the calculations described here, the boxes are assumed to be made of polar crystals, 
and are surrounded by a vacuum. To simplify the calculation we consider that the 
effective mass approximation is valid, which has been used in [12] and [15]. We also 
assume that the electrons are confined in infinitely deep potential wells in all three 
directions. In addition, mirror charge effectscan besignificant ifthere isalargedielectric 
discontinuity between the quantum box and the surrounding medium [12]. This is not 
the case for microfabricated boxes made, for example, with GaAs wells and AlGaAs 
barriers, therefore we ignore such effects here. We shall investigate such effects in the 
next paper. 
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The total Hamiltonian reads 

H = He + Hph + Hepi,. (7) 
The first term He is the Hamiltonian of the electron in the infinite well potential and is 
given by 

H, = -(h2/2m*)(az/ax2 + az /ayz  + a z / a z 2 )  1x1 s L , / 2  IyI s L, /Z  I z I  s ~ ~ / 2 .  
(8) 

Hph= nWL0B,i,,pz,p3(ml,m2,m3) B p ~ , p , . p 3 ( m l ? m Z , m 3 )  (9) 

The second term is the LO phonon operator, 

m w i  m2.m m 3 . m  

where B:,,PI,P3 (ml, m 2 ,  m 3 ) ( B p l , p 2 . p , ( m l ,  m,,  m 3 ) )  is the creation (annihilation) 
operator for the LO phonon of frequency wLo. m,, m2 and m3 are the x ,  y and z 
components of the total wavevector K. When m , ,  m,  and m3 are odd or even, andp,, 
pzandp3arepositive (+)or  negative (-). 

It should be noted that the wavevector K of the Lo-phonon is limited by the Brillouin 
zone boundary condition. That i s ,m,n/L,  s n/2a,m2n/L2 s n/2a, m3n/L3 < n/2a (a 
is the lattice constant). From these inequalities, we can obtain: 1 s m ,  s Nl/2 ( L ,  = 
N l u ) ,  1 s m2 =Z N d 2  ( L 2  = N p ) ,  1 s m3 s N 3 / 2  ( L ,  = N3a). 

The last term in (7) is the Hamiltonian of an electron interacting with the confined 
Lo-phonons and is given by HIOD). 

We separate the total Hamiltonian into two parts: 

H =  He + Hph + Hero= H o  + H-LO (10) 

where 

H~ = - (h2/2m*)(a2/axz + a2/ay2 + a 2 / a 9 )  
+ h~~0~p+, ,~~,~~(m1~m~,m3)B~, ,~~.~, (ml .m?’m3).  

( 1 1 )  m 1 . m  m z m  m 3 . m  

Since is small for the case of weak coupling, we can use the perturbative 
method. 

In the low temperature limit, few phonons are excited. As a result, we assume that 
no real phonon exists in the phonon ground state and take 10) as the wavefunction for 
the phonon system, which must satisfy 

BPI,PZ,P30)?l”2’ m3)IO) = 0. (12) 

Using the perturbative method, the second order correction of the energy can be 
obtained. Since the expression is too complicated, we only give the numerical results. 

4. Results and discussion 

In this section we choose GaAs as an example to present the numerical results. In the 
calculations we have used the following parameters for GaAs: a = 5.654 A-], k, = 
0.02516 A-’, CY = 0.0681 and haLo = 36.70 meV. 
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Figure 1. The electron self-energy of GaAsquanNm 
well wiresinunitsof -afio,,asafunctionofthesire 
of the wires. AE,,  N ,  = 0 (the chain curve); AE2, 
N, = 10 (the broken curve); AE,, N ,  = 20 (the full 
curve). 

Figure 1 shows the electron self-energies due to the interaction of an electron with 
the confined Lo-phonon as a function of the length of one side (Nz)  of the wire for several 
values of the length of the other side ( N I ) .  It is observed that as N I  has small values 
( N I  e 12), the self-energies have a peak at the beginning, and then increase slowly to 
the limit of the two-dimensional quantum well as N, approaches infinity. When Nl is 
equal to Nz,  the self-energy rises to the maximum of the peak. The smaller the size of 
the wire, the sharper the peak. As N ,  increases gradually, the peak moves to the right 
of the curve. When N1 is larger than 12 layers, the peak disappears. In these cases, the 
features of the electron self-energies are similar to those in the two-dimensional wells. 
That is, the self-energies increase monotonically and slowly approach the two-dimen- 
sional limit value as Nz is large enough. The reason for the appearance of a peak is that 
when the sizes of the wire are very small, the phonon is strongly confined in the quantum 
well wire. Upon enhancing the sues of the wire, the effects of the phonon confinement 
are gradually weakened, the peak disappears, and the curve shows the behaviour of 
monotonical enhancement. As a result, for very small wires, we must take into account 
the effects of phonon confinement. 

As we can see from the figures, the electron self-energies are related to the sizes of 
the wire rather than to the cross-sectional area of the wire. This result is different from 
the result obtained by Degani and Hipolito [9 ] .  For example, N1 = 4, Nz = 30, E = 
-0.32meV;N1=6,Nz=20,E= -0.42meV;N1= 10,Nz= 1 2 , E =  -0.53meV.We 
can also see that the absolute values of the electron self-energies are less than those in 
comparable two-dimensional quantum wells. We also note that the slow rise to the two- 
dimensional limit value after N z  = 100 is somewhat strange, but this may simply be 
assigned to the neglect of the self-energy contribution of the interaction with the surface 
phonon. 

Figure 2 shows the electron self-energies due to the interaction of electrons with the 
LO phonons as a function of the length of the cubic quantum boxes ( N I  = N 2  = N 3 ) .  It 
is observed that for small quantum cubes, the self-energies are enhanced with a decrease 
in thesizeofthequantumcubes.Figure3presentstheelectronself-energiesasafunction 
of the length of one side (N,)  of the box for several values of the length of the other two 
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Figure 2. The electron self-energy of GaAsquanNm 
cubesin unitsof - m f " a s a  functionol thesize of 
thecubes(N,=N,=N,) .  

Figure3. The electron self-energyof GaAs quantum 
boxesinunits-nfiwLoasafunctionofthesizeN,for 
several values of N, and N2. N, = N, = 8 (the full 
curve); N, = N2 = 12 (the chain curve); NI = N, = 
20 (the broken curve). 

sides (NI = N2) .  From the figures we can see that the self-energy increases rapidly to a 
maximum and thendecreasesslowly to the limit of the wire case asN,approachesinfinity 
while remaining fixed in the other two directions ( N ,  and N2). 

For smaller N, and .Vz, the peak is sharper. The reason for the appearance of a peak 
is that as the size of the box is small, the phonon is strongly confined in the quantum box. 
With an increase of the size of the box, the effect of phonon confinement is gradually 
weakened and the peak is smoothed. This result is just like the wire case. As N I  = N Z  = 
40. the peak still exists. Therefore, for small boxes the effects of phonon confinement 
must be taken into account. From the calculations we notice that the self-energy still has 
the features of those in NI = N ,  = 20 even though N I  = N 2  = 6. This may imply that as 
N ,  = N ,  = 6, the approximation we used here is still available. In addition, as we can 
see from the figures the maximum of the self-energies at small NI and N z  is larger than 
at large NI and N ,  with increasing N,. 

5. Conclusions 

The electron self-energies due to the interaction of an electron with the Lo-phonons that 
incorporate the effects of phonon confinement in a rectangular quantum-well wire and 
a quantum box have been calculated as a function of the sizes of the quantum boxes and 
wires by the perturbative method. In the calculations, we have used the continuum 
approximationin which thelattice is treatedasapolarizablecontinuum and theeffective- 
mass approximation is used for the electron. As regards the corrections to the continuum 
approximation, Lepine and Frongillo [21] have recently investigated the effects of the 
corrections to the continuum approximation in the Frohlich Hamiltonian and have 
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shown that for the polar crystals, the corrections to the continuum approximation are 
rather small, the largest one being of the order of 3% for the case of weak-coupling polar 
crystals. The results show that the effects of phonon confinement are dominant in small 
boxes and wires, and must be taken into account. We also find that the self-energies are 
related to the sizes of the cross-section rather than to the cross-sectional area of the wire. 
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